
The MongoDB Aggregation
Framework

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

(CC BY-NC-SA 3.0)

LESSON

Google slide deck available here

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://docs.google.com/presentation/d/1skcbXmW62Mk_fkq99h1K2RPErmYT1flZ2b36DChFGy0/edit?usp=sharing

MongoDB
Aggregation
Framework

Aggregation
Framework

Extends what can be
done with data in
MongoDB beyond MQL.

MongoDB
Query
Language

We previously covered MQL or the MongoDB Query Language in our lessons. It
provides a means of interacting with data in a single collection.

The Aggregation Framework extends what can be done with data beyond the
capabilities of MQL. It provides a framework to perform complex data processing on
the documents through a series of stages.

In this lesson, we’ll explore more about the Aggregation Framework and what it can
provide you in terms of functionality.

Processes documents and returns computed results

Wider set of functionality than available in MQL

Applies a sequence of query operations that can reduce and transform the
documents

Why Aggregation?

Let’s just clarify again the reasons why you should or would want to use the
Aggregation Framework.

Firstly, it allows for process documents and return computed results. MQL is
specifically designed to query, it is not designed to manipulate data or return
computed results.

Secondly, it has a much wider set of functionality than available in MQL. We’ll cover a
brief introduction to many of these functions in this lesson but for more depth, you
should review the MongoDB Documentation pages on the Aggregation Framework.

Thirdly, it allows for the application of a sequence of query operations which can
reduce and transform documents. This would require multiple iterations of MQL each
time requiring you to read all of the documents, the Aggregation Framework can
greatly reduce the unnecessary processing where documents need only be read once
and then passed through each stage.

A framework that supports complex manipulation of documents

Key characteristics of the framework:

● Stages

● Expressions

● Easy to debug

● Input

● Outputs

● Driver support

What is the Aggregation Framework?

As we mentioned, the aggregation framework is designed to support the complex
manipulation of documents.

Stages: It is broken into stages, these sequentially perform an operation or set of
operations within a pipeline of stages.

Expressions: Cover a large toolkit of operators, functions and algorithms that can be
used within the stages.

Easy to debug: The complex pipelines of many stages are easier to debug as the
problem can typically be localised to a single stage rather than needing to debug the
entire pipeline. This is unlike aggregations in relational databases.

In terms of input to the aggregation pipeline, a single collection is used however the
documents in this collection are copied and are not modified. The pipeline holds a
copy of the documents and any modifications made to them as they move through the
various stages of the pipeline.

Outputs: Outputs from an aggregation pipeline can be saved to a collection or they
can be made available to an application as a cursor (using a MongoDB Driver).

Driver support: All of the MongoDB Drivers support the Aggregation Framework.

MongoDB Aggregation
Framework

Complex operations broken
into stages

Operators called within stages

Designed for aggregations

Functionality within the DB

Let’s look at quick overview of the Aggregation Framework before diving down into
more depth.

Firstly, it is designed for aggregations to process and reshape data.
Secondly, it breaks down the complex operations into stages.
Thirdly, operators or the toolkit of functions available for the Aggregation Framework
are called within these stages.
Fourthly, this is native functionality that is contained within the database.

Aggregation Framework Stages

Aggregation Stage MQL find() equivalent

$match find(<query>)

$projection find(<query>, projection)

$sort find(<query>).sort(order)

$limit find(<query>).limit(num)

$skip find(<query>).skip(num)

$count find(<query>).count()

Let’s explore the most frequently used Aggregation Framework stages in terms of
their MQL find() equivalent.

A minor note to mention is that if any of these stages with a find() equivalent are used
at the start of an Aggregation Pipeline, they are converted to their find() equivalent
which is then run with the results piped to the next stage of the pipeline.

These stages are mostly analogous to their find() equivalent. The only exception
being $project, which we will discuss in more detail.

Aggregation Framework Stages

Aggregation Stage MQL find() equivalent

$match find(<query>)

$projection find(<query>, projection)

$sort find(<query>).sort(order)

$limit find(<query>).limit(num)

$skip find(<query>).skip(num)

$count find(<query>).count()

Looking firstly at the $match, we can see it closely matches the standard MQL find()
with a query document.

Aggregation Framework Stages

Aggregation Stage MQL find() equivalent

$match find(<query>)

$projection find(<query>, projection)

$sort find(<query>).sort(order)

$limit find(<query>).limit(num)

$skip find(<query>).skip(num)

$count find(<query>).count()

The $projection stage is somewhat different to using a MQL find() with a projection.
The main difference is that $projection only works to limit the fields in the output
document. It doesn’t also have a query or filtering stage so it must be combined with
$match to provide that functionality.

Aggregation Framework Stages

Aggregation Stage MQL find() equivalent

$match find(<query>)

$projection find(<query>, projection)

$sort find(<query>).sort(order)

$limit find(<query>).limit(num)

$skip find(<query>).skip(num)

$count find(<query>).count()

$sort is similar to the sort functionality in MQL’s find(). This provides in a similar
fashion to find where the sort is a separate function call, $sort would still need to be
used with another stage like $match to provide similar functionality to find(<query>)
functionality.

Aggregation Framework Stages

Aggregation Stage MQL find() equivalent

$match find(<query>)

$projection find(<query>, projection)

$sort find(<query>).sort(order)

$limit find(<query>).limit(num)

$skip find(<query>).skip(num)

$count find(<query>).count()

The $limit stage provides similar functionality to the limit functionality that can be used
with MQL’s find().

Aggregation Framework Stages

Aggregation Stage MQL find() equivalent

$match find(<query>)

$projection find(<query>, projection)

$sort find(<query>).sort(order)

$limit find(<query>).limit(num)

$skip find(<query>).skip(num)

$count find(<query>).count()

Similarly, $skip provides the equivalent functionality to the skip function used with
find().

Aggregation Framework Stages

Aggregation Stage MQL find() equivalent

$match find(<query>)

$projection find(<query>, projection)

$sort find(<query>).sort(order)

$limit find(<query>).limit(num)

$skip find(<query>).skip(num)

$count find(<query>).count()

Lastly, $count also provides the same functionality to the count() that can be used
with find().

Aggregation Framework Stages

$facet

$geoNear

$graphLookup

$lookup

$merge

$group

$unionWith

$addFields

$unwind

and more ...

Beyond these stages, there are many others providing different functionality. We’ll
cover a few briefly in this lesson but for a deeper and wider coverage, the MongoDB
Documentation page for the Aggregation Framework is recommended.

Let’s take a quick tour through some of the more useful and important stages to be
aware of.

Firstly, $facet allows multiple aggregation pipelines to be processed within this stage
on the same set of input documents.

Next, $geoNear essentially provides $match, $sort, and $limit for geospatial data.
This stage returns ordered stream of documents based on the proximity to a
geospatial point.

Thirdly, $graphLookup performs a recursive search on a collection.

The $lookup stage provides essentially a left outer join to another collection in the
same database. This allows for those documents to “filter” into the “joined” collection
for processing.

Fifthly, $merge is a related but separate stage to $out. The $merge stage adds the
ability to output data to collections without overwriting them completely, it can update
or replace documents based on options supplied to the stage. Additionally, this stage
unlike $out can write to sharded collections.

$group is a really useful and important stage, it buckets each document into groups
identified by a specific identifier expression. Each group has one document
associated with it. It can apply accumulator expression(s) as part of this process. The
output document for each group will have the identifier expression and any specified
accumulated fields.

The next stage we will look at is $unionWith, which will union two collections from two
pipelines into a single result set.

The eight stage, $addFields allows for a field to be added to the document as it passes
through this stage. The output document will contain the original fields and any ‘added’
fields from this stage. $set is an alias for $addFields

The last stage, we’ll highlight is the $unwind stage which allows an array field to be
broken apart. Each element within the array will be made into a separate document.

Beyond these stages, there are many other useful stages. We recommend reviewing the
MongoDB Documentation pages for more details. If you want to follow a deeper dive into
the Aggregation Framework then the course M121 MongoDB Aggregation Framework
https://university.mongodb.com/courses/M121/about is the ideal next step.

https://university.mongodb.com/courses/M121/about

Quiz

Quiz

Which of the following are valid aggregation stages in the MongoDB
Aggregation Framework? More than one answer choice can be
correct.

A. $group

B. $removeFields

C. $find

D. $match

Quiz

Which of the following are valid aggregation stages in the MongoDB
Aggregation Framework? More than one answer choice can be
correct.

A. $group

B. $removeFields

C. $find

D. $match

CORRECT: $group. This is a valid aggregation stage.
INCORRECT: $removeFields. This is not a valid aggregation stage, the $project
stage would provide this type of functionality if required.
INCORRECT: $find. There is no $find stage in the Aggregation Framework, the
closest equivalent stage is $match.
CORRECT: $match. This is correct and a valid stage with MongoDB’s Aggregation
Framework.

Quiz

Which of the following are valid aggregation stages in the MongoDB
Aggregation Framework? More than one answer choice can be
correct.

A. $group

B. $removeFields

C. $find

D. $match

This is correct. This is a
valid aggregation stage.

CORRECT: $group. This is a valid aggregation stage.

Quiz

Which of the following are valid aggregation stages in the MongoDB
Aggregation Framework? More than one answer choice can be
correct.

A. $group

B. $removeFields

C. $find

D. $match

This is incorrect. This is not
a valid aggregation stage,
the $project stage would
provide this type of
functionality if required.

INCORRECT: $removeFields. This is not a valid aggregation stage, the $project stage
would provide this type of functionality if required.

Quiz

Which of the following are valid aggregation stages in the MongoDB
Aggregation Framework? More than one answer choice can be
correct.

A. $group

B. $removeFields

C. $find

D. $match

This is incorrect. There is no
$find stage in the
Aggregation Framework,
the closest equivalent
stage is $match.

INCORRECT: $find. There is no $find stage in the Aggregation Framework, the
closest equivalent stage is $match.

Quiz

Which of the following are valid aggregation stages in the MongoDB
Aggregation Framework? More than one answer choice can be
correct.

A. $group

B. $removeFields

C. $find

D. $match

This is correct. It is a valid
stage with MongoDB’s
Aggregation Framework.

CORRECT: $match. This is correct and a valid stage with MongoDB’s Aggregation
Framework.

One Query: Two
Approaches

Let’s take one query and walk through it using MQL and using Aggregation to see the
similarities and the differences.

Let’s look at the Aggregation Framework with the MongoDB Web Shell

MongoDB provides a MongoDB Shell that
accesses a MongoDB instance that can be
used to follow these examples using just a
web browser and no additional software.

How to use the MongoDB Web Shell

If you want to follow along with the example for your class or if you want your students
to follow along, MongoDB provides a MongoDB shell that accesses a MongoDB
instance that can be used to follow these examples using just a web browser and no
additional software. https://mws.mongodb.com/

https://mws.mongodb.com/
https://mws.mongodb.com/

MongoDB Web Shell

Click on this web
page to connect to
the MongoDB Web
Shell instance.

Once the page loads, click on the page to ‘connect’ to the MongoDB Web Shell.
This will give you a shell connected to a MongoDB instance where you can use the
commands in the following example if you want to follow along.

First, let’s clean up existing data to avoid confusion!

>>> cowCol = db.getCollection("cow")

Test.cow

>>> cowCol.drop()

Example: Querying in the Aggregation Framework

Firstly, we’re going to create some realistic but fake data to compare the query
approaches available in MongoDB.

This data, will be on animals specifically on their productivity. In this lesson, we’ll use
a common farm animal, the cow and it’s milk production as the items we wish to
record and query in terms of productivity.

Thirdly, we will look at the two differing approaches within MongoDB using MQL and
using the Aggregation Framework as to how we could query this data.

In order to avoid confusion we’ll clean any existing data so that everything starts from
the same state.

Let’s create the cow collection, dropping it if it’s already there (cowCol.drop()) and
starting fresh.

We drop the collection to simplify this example as existing data may change the
number of documents that could be returned and it’s easier for this example to start
fresh.

See: https://docs.mongodb.com/manual/reference/method/db.collection.drop/

https://docs.mongodb.com/manual/reference/method/db.collection.drop/

Let’s insert some data on cows!

>>> for(c=0;c<1000;c++) {

farm_id = Math.floor((Math.random()*5)+1);

cowCol.insertOne({ name: "daisy", milk: c, farm: farm_id});

}

{

acknowledged : true,

insertedIds : ObjectId(5f2aefa8fde88235b959f0b1a),

}

Example: Querying in the Aggregation Framework

Moving into our farm example, let’s firstly add some real data on the cows in the farm!

Let’s insert 1000 documents using a for loop with some random data in terms of which
farm the specific cow belongs to.

The for loop inserts 1000 documents each with the name field equal to “daisy” and a
varying value for the milk field. It assigns a random farm id value between 1 and 5 to
the field ‘farm’.

We can use the following code to input some data into our database.

cowCol = db.getCollection("cow")
cowCol.drop()
for(c=0;c<10;c++) {
cowCol.insertOne({ name: "daisy", milk: c})

See: https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

https://docs.mongodb.com/manual/reference/method/db.collection.insertOne/

Syntax:

Using the web shell window, we will run a query to find the first ten (10)

documents for farm ‘1’ using MQL (find) and using Aggregation (aggregate).

cowCol.find(
{"farm": 1},
{"name": 1, "milk": 1, "_id": 0}).limit(10).pretty()

cowCol.aggregate([
{ $match: { "farm": 1 }},
{ $project:{ "name": 1, "milk": 1, "_id": 0 }},
{ $limit: 10 }
])

Example: Querying in the Aggregation Framework

Let’s first look at the MQL (find) query which will return the first ten documents and
include only the name and the milk fields.

Next’s let’s look at the equivalent query using the Aggregation Framework, we use the
$match and the $project to specify the query criteria. The $limit stage is the equivalent
of the limit() function used in the MQL statement.

Let’s focus on the Aggregation Framework syntax:

cowCol.aggregate([
{ $match: { "farm": 1 }},
{ $project:{ "name": 1, "milk": 1,
"_id": 0 }},
{ $limit: 10 }
])

Array

Example: Querying in the Aggregation Framework

Each aggregation pipeline is an array which holds the stages to execute and the
parameters for that stage.

Let’s focus on the Aggregation Framework syntax:

cowCol.aggregate([
{ $match: { "farm": 1 }},
{ $project:{ "name": 1, "milk": 1,
"_id": 0 }},
{ $limit: 10 }
])

Documents

Example: Querying in the Aggregation Framework

More specifically, each stage is a document with the parameters being stored in the
document.

[

 { $match:
 {"farm":"1} },

 { $project:
{"name": 1,
"milk": 1,
"_id": 0 }

 },

 { $limit: 10 }

]

cows

Let’s imagine our aggregation pipeline as literally stages in a pipe and for this
example we can think of it as three interconnected but separate pipes.

[

 { $match:
 {"farm":"1} },

 { $project:
{"name": 1,
"milk": 1,
"_id": 0 }

 },

 { $limit: 10 }

]

cows

$match

{... farm: 1 ...}

{... farm: 1 ...}

{... farm: 1 ...}

The first pipe is the $match stage, which acts as a filter that allows only documents
related to the farm with the id ‘1’ to pass to the next stage of the aggregation pipeline
filter.

[

 { $match:
 {"farm":"1} },

 { $project:
{"name": 1,
"milk": 1,
"_id": 0 }

 },

 { $limit: 10 }

]

cows

$match
{... farm: 1 ...}

{... farm: 1 ...}

{... farm: 1 ...}

{ name:

milk: } { name:

milk: } { name:

milk: }, ,

$project

The second pipe or stage is the $project stage, which acts as a different kind of filter.
It filters on the fields we explicitly select to pass through to the next stage. This
filtering selects only the ‘name’ and the ‘milk’ fields as those we want to send forward
and we explicitly remove the ‘_id’ field from the documents as this isn’t necessary for
our output.

[

 { $match:
 {"farm":"1} },

 { $project:
{"name": 1,
"milk": 1,
"_id": 0 }

 },

 { $limit: 10 }

]

{

cows

$match

{... farm: 1 ...}

{... farm: 1 ...}

{... farm: 1 ...}

{ name:

milk: } { name:

milk: } { name:

milk: }, ,

$project

$limit

The third and final stage is the $limit stage, which acts as yet another kind of filter. In
this case, it will only let the first ten (10) documents through and then finish the
processing of the pipeline.

Results
cowCol.find(
{"farm": 1},
{"name": 1, "milk": 1, "_id":
0}).limit(10).pretty()

{ "name" : "daisy", "milk" : 4 }
{ "name" : "daisy", "milk" : 6 }
{ "name" : "daisy", "milk" : 14 }
{ "name" : "daisy", "milk" : 20 }
{ "name" : "daisy", "milk" : 31 }
{ "name" : "daisy", "milk" : 34 }
{ "name" : "daisy", "milk" : 43 }
{ "name" : "daisy", "milk" : 44 }
{ "name" : "daisy", "milk" : 55 }
{ "name" : "daisy", "milk" : 71 }

cowCol.aggregate([{ $match: { "farm": 1 }},
{ $project:{ "name": 1, "milk": 1, "_id": 0 }},
{ $limit: 10 }])

{ "name" : "daisy", "milk" : 4 }
{ "name" : "daisy", "milk" : 6 }
{ "name" : "daisy", "milk" : 14 }
{ "name" : "daisy", "milk" : 20 }
{ "name" : "daisy", "milk" : 31 }
{ "name" : "daisy", "milk" : 34 }
{ "name" : "daisy", "milk" : 43 }
{ "name" : "daisy", "milk" : 44 }
{ "name" : "daisy", "milk" : 55 }
{ "name" : "daisy", "milk" : 71 }

The results are identical as expected. The first ten documents from the farm with id ‘1’
containing only the ‘name’ and the ‘milk’ fields.

Firstly we can see the output of the find query.
Then we can see the output of the aggregation query.

$group

This stage takes the
incoming stream of
documents, and
segments it. Each
group is represented
by a single document.

$group

$group

The $group operator takes the incoming stream of documents and segments it into
groups.

Each group is represented by a single document.

[

 { $group:

 { _id: "$farm",

 total_milk:

 { $sum: "$milk" }

 }

 }

]

$group

Let’s use our existing data and cows collection with the $group stage.

$group

[

 { $group:
 { _id: "$farm",
 total_milk:
 { $sum: "$milk" }
 }
 }

]

$group

Specifically, let’s group on the farm id number setting the new document _id to
represent this and then we can use the $sum accumulator to calculate how much milk
each farm has produced.

Results
cowCol.aggregate([{ $group:
{ _id: "$farm", total_milk: {$sum: "$milk"} }}])

{ "_id" : 4, "total_milk" : 96562 }
{ "_id" : 1, "total_milk" : 110104 }
{ "_id" : 2, "total_milk" : 99335 }
{ "_id" : 5, "total_milk" : 108357 }
{ "_id" : 3, "total_milk" : 85142 }

The $group stage can be combined with various operators such as the $sum
accumulator operator to total all of the milk fields in each document grouped per farm.

Quiz

Quiz

Which of the following are true for the $group aggregation stage in
MongoDB? More than one answer choice can be correct.

A. Each group in $group is represented by one document

B. $group can be used with accumulators

C. Accumulators with $group can create new fields in the output
document

Quiz

Which of the following are true for the $group aggregation stage in
MongoDB? More than one answer choice can be correct.

A. Each group in $group is represented by one document

B. $group can be used with accumulators

C. Accumulators with $group can create new fields in the output
document

CORRECT: Each group in $group is represented by one document - Each group or
category within the $group gets a single output document which represents that
category or group.
CORRECT: $group can be used with accumulators - This is correct. Accumulators can
be used with $group and from our earlier example we can see how they can easily be
used for reporting as with our farm/cow example.
CORRECT: Accumulators with $group can create new fields in the output document.
This is correct and we have seen this with the total_milk in our previous farm/cow
example.

Quiz

Which of the following are true for the $group aggregation stage in
MongoDB? More than one answer choice can be correct.

A. Each group in $group is represented by one document

B. $group can be used with accumulators

C. Accumulators with $group can create new fields
in the output document

This is correct. Each
group or category
within the $group
gets a single output
document which
represents that
category or group.

CORRECT: Each group in $group is represented by one document - Each group or
category within the $group gets a single output document which represents that
category or group.

Quiz

Which of the following are true for the $group aggregation stage in
MongoDB? More than one answer choice can be correct.

A. Each group in $group is represented by one document

B. $group can be used with accumulators

C. Accumulators with $group can create new fields
in the output document

This is correct. Accumulators can
be used with $group and from
our earlier example we can see
how they can easily be used for
reporting as with our farm/cow
example.

CORRECT: $group can be used with accumulators - This is correct. Accumulators can
be used with $group and from our earlier example we can see how they can easily be
used for reporting as with our farm/cow example.

Quiz

Which of the following are true for the $group aggregation stage in
MongoDB? More than one answer choice can be correct.

A. Each group in $group is represented by one document

B. $group can be used with accumulators

C. Accumulators with $group can create new fields
in the output document

This is correct.
We have seen
this with the
total_milk
example.

CORRECT: Accumulators with $group can create new fields in the output document.
This is correct and we have seen this with the total_milk in our previous farm/cow
example.

$addFields/$set

This stage takes the incoming
stream of documents, and
adds a new field to the
document as it is processed.

$addFields

$addFields

{name:

mlk:

age: } {name:

milk:

age: } {name:

milk:

age: }, ,

The $addFields stage takes an incoming stream of documents and adds a field to the
document which outputs a new document with this field. This allows for data to be
enriched from data within the existing document or for new data to be added.

In our example, let’s again look at the cows collection and add an age field to each
document using this stage.

$addFields

{name:

mlk:

age: } {name:

milk:

age: } {name:

milk:

age: }, ,

[

 { $addFields:

 { age:

 { $function: {

 body: function()

 { age = Math.floor
((Math.random() *5) + 1)

 return age },

 args: [],

 lang: "js" } }

 }

 }

]

$addFields

{name:

mlk:

age: } {name:

milk:

age: } {name:

milk:

age: }, ,

Let’s use our existing data and cows collection with the $addFields stage.

$addFields

{name:

mlk:

age: } {name:

milk:

age: } {name:

milk:

age: }, ,

[

 { $addFields:

 { age:

 { $function: {

 body: function()

 { age = Math.floor
((Math.random() *5) + 1)

 return age },

 args: [],

 lang: "js" } }

 }

 }

]

$addFields

{name:

mlk:

age: } {name:

milk:

age: } {name:

milk:

age: }, ,

In the $addFields stage, we want to add a new field to the documents to represent the
age of the cows. We can use the $function operator to create a Javascript function,
similar to what we already use to randomly generate the farm id when we first created
this data.

Let’s look a little more at the $function operator.

$addFields

{name:

mlk:

age: } {name:

milk:

age: } {name:

milk:

age: }, ,

[

 { $addFields:

 { age:

 { $function: {

 body: function()

 { age = Math.floor
((Math.random() *5) + 1)

 return age },

 args: [],

 lang: "js" } }

 }

 }

]

$addFields

{name:

mlk:

age: } {name:

milk:

age: } {name:

milk:

age: }, ,

The $function operator takes three parameters, the body which represents the
function we want to use (we’ll return to this shortly), the args or arguments array, and
the lang or language of the function.

The arguments array is empty in our example as we are not passing any information
to the function but we could use it to pass existing fields from the document into the
function and use them in the processing/output.

The language field uses “js” to indicate Javascript, currently this is the only valid value
and language that we can use to write the functions with the $function operator.

$addFields

{name:

mlk:

age: } {name:

milk:

age: } {name:

milk:

age: }, ,

[

 { $addFields:

 { age:

 { $function: {

 body: function()

 { age = Math.floor
((Math.random() *5) + 1)

 return age },

 args: [],

 lang: "js" } }

 }

 }

]

$addFields

{name:

mlk:

age: } {name:

milk:

age: } {name:

milk:

age: }, ,

Returning to focus on the body variable and specifically looking at the function. We
create a new variable ‘age’ which is assigned a random number from 1 to 5. We
return this value from our function.

The document outputted from this stage will have a new field ‘age’ which will hold the
value generated from the $function operator.

We will process every document in the same fashion, randomly generating age values
for each of the cows that these documents represent.

Results
cowCol.aggregate([{ $addFields: { age: {

$function: { body: function() { age

Math.floor((Math.random()*5)+1); return age },

args: [], lang: "js" } } } }])

{ "_id" : ObjectId("5fb653bf4b6e3ccd9df5cacf"), "name" : "daisy", "milk" : 0, "farm" : 5, "age" : 3 }

{ "_id" : ObjectId("5fb653bf4b6e3ccd9df5cad0"), "name" : "daisy", "milk" : 1, "farm" : 3, "age" : 4 }

{ "_id" : ObjectId("5fb653bf4b6e3ccd9df5cad2"), "name" : "daisy", "milk" : 3, "farm" : 5, "age" : 2 }

{ "_id" : ObjectId("5fb653bf4b6e3ccd9df5cad3"), "name" : "daisy", "milk" : 4, "farm" : 1, "age" : 5 }

……

In this example we have used the $addFields stage with the $function operator to add
a new field to our documents, we specifically added a random value between 1 and 5
to represent the ‘age’.

We are able to use the existing set of Javascript functions within the $function
operator.

This example shows how we can enrich documents as they progress through the
Aggregation Framework adding fields with information such as age or other calculated
information.

$unionWith

This stage combines
the results from two
pipelines into one. The
results include
duplicates.

$unionWith

The $unionWith stage allows for two aggregation pipelines results to be merge with
duplicates and outputted as the result of this stage.

Quiz

Quiz

Which of the following are true for Aggregation Framework in MongoDB?
More than one answer choice can be correct.

A. $addFields is an alias for $set

B. $function operator allows Javascript functions to be defined

C. $unionWith removes duplicates from the documents outputted

Quiz

Which of the following are true for Aggregation
Framework in MongoDB? More than one answer
choice can be correct.

A. $addFields is an alias for $set

B. $function operator allows Javascript

functions to be defined

C. $unionWith removes duplicates from

the documents outputted

CORRECT: $addFields is an alias for $set - This is correct, $set and $addFields
provide the same functionality in the Aggregation Framework.
CORRECT: $function operator allows Javascript functions to be defined. This is
correct, the $function operator allows for custom Javascript functions to be defined
and used with the MongoDB Aggregation Framework.
INCORRECT: $unionWith removes duplicates from the documents outputted. This is
incorrect as $unionWith outputs duplicate documents when combining the two
pipelines.

Quiz

Which of the following are true for Aggregation
Framework in MongoDB? More than one answer
choice can be correct.

A. $addFields is an alias for $set

B. $function operator allows Javascript

functions to be defined

C. $unionWith removes duplicates from

the documents outputted

This is correct, $set and
$addFields provide the
same functionality in the
Aggregation Framework.

CORRECT: $addFields is an alias for $set - This is correct, $set and $addFields
provide the same functionality in the Aggregation Framework.

Quiz

Which of the following are true for Aggregation
Framework in MongoDB? More than one answer
choice can be correct.

A. $addFields is an alias for $set

B. $function operator allows Javascript

functions to be defined

C. $unionWith removes duplicates from

the documents outputted

This is correct, the
$function operator allows
for custom Javascript
functions to be defined
and used with the
MongoDB Aggregation
Framework.

CORRECT: $function operator allows Javascript functions to be defined. This is
correct, the $function operator allows for custom Javascript functions to be defined
and used with the MongoDB Aggregation Framework.

Quiz

Which of the following are true for Aggregation
Framework in MongoDB? More than one answer
choice can be correct.

A. $addFields is an alias for $set

B. $function operator allows Javascript

functions to be defined

C. $unionWith removes duplicates from

the documents outputted

This is incorrect as
$unionWith outputs
duplicate documents
when combining the two
pipelines.

INCORRECT: $unionWith removes duplicates from the documents outputted. This is
incorrect as $unionWith outputs duplicate documents when combining the two
pipelines.

Expressions

Aggregation Framework Expressions

Expressions consist of field paths, literals, system variables, expression
objects, and expression operators. These can be nested.

Expression operators provide a wide range of functions. These can be used
within a stage.

Field paths allow fields or fields within embedded documents to be
accessed.

Aggregation Framework Expressions provide a wealth of additional functionality that
can be used within the stages of the Aggregation Framework.

Expressions consists of field paths, literals, system variables, expression objects, and
expression operators. These can be nested.

Aggregation Framework Expressions

Expressions consist of field paths, literals, system variables, expression
objects, and expression operators. These can be nested.

Expression operators provide a wide range of functions. These can be used
within a stage.

Field paths allow fields or fields within embedded documents to be
accessed.

Expression operators are a key aspect of the versatility and power of the Aggregation
Framework. They provide a wide range of functionality that can be used within an
aggregation pipeline stage. We’ll explore these in more detail shortly.

Aggregation Framework Expressions

Expressions consist of field paths, literals, system variables, expression
objects, and expression operators. These can be nested.

Expression operators provide a wide range of functions. These can be used
within a stage.

Field paths allow fields or fields within embedded documents to be
accessed.

Field paths are used in Aggregation Framework Expressions to allow a field or fields,
whether in the document or in an embedded document or documents, be accessed.
This allows these fields to be manipulated during a given pipeline stage.

Aggregation Framework Expression Operators

Date

String

Trigonometric

Accumulators

and more...

Arithmetic

Array

Boolean

Comparison

Conditional

The MongoDB Aggregation framework has a large number of expression operators,
here are a few of the categories most frequently used.

Arithmetic expressions, Array, Boolean, Comparison, Conditional, Data and String.
There are a wider variety of expression operators with more specialized functionality
such as the trigonometric and accumulator operators. Feel free to review the
MongoDB Aggregation Documentation page for Expression Operators to learn more
about the range of these expression operators.

Quiz

Quiz
Which of the following are true for Aggregation Expressions in the
Aggregation Framework? More than one answer choice can be correct.

A. Work with field paths, literals, system variables, expression

objects, and expression operators

B. Do not work with embedded data or embedded fields

C. Provide additional functionality that be used within the stages

D. Field paths allow embedded data to be accessed

Quiz
Which of the following are true for Aggregation Expressions in the
Aggregation Framework? More than one answer choice can be correct.

A. Work with field paths, literals, system variables, expression

objects, and expression operators

B. Do not work with embedded data or embedded fields

C. Provide additional functionality that be used within the stages

D. Field paths allow embedded data to be accessed

CORRECT: Work with field paths, literals, system variables, expression objects, and
expression operators - This is correct. Aggregation Expression work with field paths,
literals, system variables, expression objects, and expression operators.
INCORRECT: Do not work with embedded data or embedded fields - This is incorrect.
Aggregation Expressions do work with embedded data or with embedded fields.
CORRECT: Provide additional functionality that be used within the stages - This is
correct. Aggregation Expressions provide a wide range of functionality that can be
used within Aggregation Framework stages.
CORRECT: Field paths allow embedded data to be accessed - This is correct. Field
paths are the mechanisms that allows for embedded data to be accessed in the
Aggregation framework.

Which of the following are true for Aggregation
Expressions in the Aggregation Framework? More than
one answer choice can be correct.

A. Work with field paths, literals, system

variables, expression objects, and expression

operators

B. Do not work with embedded data or

embedded fields

C. Provide additional functionality that be used

within the stages

D. Field paths allow embedded data to be

accessed

This is correct. Aggregation
Expression work with field
paths, literals, system
variables, expression objects,
and expression operators.

Quiz

CORRECT: Work with field paths, literals, system variables, expression objects, and
expression operators - This is correct. Aggregation Expression work with field paths,
literals, system variables, expression objects, and expression operators.

Which of the following are true for Aggregation
Expressions in the Aggregation Framework? More than
one answer choice can be correct.

A. Works with field paths, literals, system

variables, expression objects, and expression

operators

B. Do not work with embedded data or

embedded fields

C. Provide additional functionality that be used

within the stages

D. Field paths allow embedded data to be

accessed

This is incorrect.
Aggregation Expressions
do work with embedded
data or with embedded
fields.

Quiz

INCORRECT: Do not work with embedded data or embedded fields - This is incorrect.
Aggregation Expressions do work with embedded data or with embedded fields.

Which of the following are true for Aggregation
Expressions in the Aggregation Framework? More than
one answer choice can be correct.

A. Works with field paths, literals, system

variables, expression objects, and expression

operators

B. Do not work with embedded data or

embedded fields

C. Provide additional functionality that be used

within the stages

D. Field paths allow embedded data to be

accessed

This is correct. Aggregation
Expressions provide a wide
range of functionality that
can be used within
Aggregation Framework
stages.

Quiz

CORRECT: Provide additional functionality that be used within the stages - This is
correct. Aggregation Expressions provide a wide range of functionality that can be
used within Aggregation Framework stages.

Which of the following are true for Aggregation
Expressions in the Aggregation Framework? More than
one answer choice can be correct.

A. Works with field paths, literals, system

variables, expression objects, and expression

operators

B. Do not work with embedded data or

embedded fields

C. Provide additional functionality that be used

within the stages

D. Field paths allow embedded data to be

accessed

This is correct. Field paths
are the mechanisms that
allows for embedded data
to be accessed in the
Aggregation framework.

Quiz

CORRECT: Field paths allow embedded data to be accessed - This is correct. Field
paths are the mechanisms that allows for embedded data to be accessed in the
Aggregation framework.

Expression
Operators

Expression Operators: Arithmetic

● $abs
● $add
● $ceil
● $divide
● $exp
● $floor
● $ln
● $log
● $log10
● $mod
● $multiple
● $pow
● $round
● $square

● $arrayElemAt
● $arrayToObject
● $concatArrays
● $filter
● $first
● $in
● $indexOfArray
● $isArray
● $last
● $map
● $objectToArray
● $range
● $reduce
● $reverseArray

● $size
● $slice
● $zip

● $and
● $not
● $or

● $cmp
● $gt
● $gte
● $lt
● $lte
● $ne

● $allElementsTrue
● $anyElementTrue
● $setDifference
● $setEquals
● $setIntersection
● $setIsSubset
● $setUnion

● $trunc
● $subtract

We’ll cover a number of the expression operator categories in the Aggregation
Framework, the sheer number of operators and categories means that we will only
briefly cover these and for more details, you should visit the MongoDB Documentation
pages to learn more.

In the case of the Arithmetic operators, there is a wide variety of functionality and we’ll
only look at a few of these to give a taste of the possibilities.

Expression Operators: Arithmetic

● $abs
● $add
● $ceil
● $divide
● $exp
● $floor
● $ln
● $log
● $log10
● $mod
● $multiple
● $pow
● $round
● $square

● $arrayElemAt
● $arrayToObject
● $concatArrays
● $filter
● $first
● $in
● $indexOfArray
● $isArray
● $last
● $map
● $objectToArray
● $range
● $reduce
● $reverseArray

● $size
● $slice
● $zip

● $and
● $not
● $or

● $cmp
● $gt
● $gte
● $lt
● $lte
● $ne

● $allElementsTrue
● $anyElementTrue
● $setDifference
● $setEquals
● $setIntersection
● $setIsSubset
● $setUnion

● $trunc
● $subtract

$add and $subtract perform addition or subtraction with numbers and with dates
respectively

Expression Operators: Arithmetic

● $abs
● $add
● $ceil
● $divide
● $exp
● $floor
● $ln
● $log
● $log10
● $mod
● $multiple
● $pow
● $round
● $square

● $arrayElemAt
● $arrayToObject
● $concatArrays
● $filter
● $first
● $in
● $indexOfArray
● $isArray
● $last
● $map
● $objectToArray
● $range
● $reduce
● $reverseArray

● $size
● $slice
● $zip

● $and
● $not
● $or

● $cmp
● $gt
● $gte
● $lt
● $lte
● $ne

● $allElementsTrue
● $anyElementTrue
● $setDifference
● $setEquals
● $setIntersection
● $setIsSubset
● $setUnion

● $trunc
● $subtract

$ceil returns the smallest integer greater than or equal to the specified number.
$floor returns the largest integer less than or equal to the specified number.

Expression Operators: Arithmetic

● $abs
● $add
● $ceil
● $divide
● $exp
● $floor
● $ln
● $log
● $log10
● $mod
● $multiple
● $pow
● $round
● $square

● $arrayElemAt
● $arrayToObject
● $concatArrays
● $filter
● $first
● $in
● $indexOfArray
● $isArray
● $last
● $map
● $objectToArray
● $range
● $reduce
● $reverseArray

● $size
● $slice
● $zip

● $and
● $not
● $or

● $cmp
● $gt
● $gte
● $lt
● $lte
● $ne

● $allElementsTrue
● $anyElementTrue
● $setDifference
● $setEquals
● $setIntersection
● $setIsSubset
● $setUnion

● $trunc
● $subtract

In terms of boolean expression operators, there are three to highlight $and, $not, and
$or.
They evaluate the expressions supplied as booleans and return a boolean. $and and
$or accept multiple arguments whilst $not takes a single argument. They perform the
standard and, not, and or from boolean logic.

Expression Operators: Arithmetic

● $abs
● $add
● $ceil
● $divide
● $exp
● $floor
● $ln
● $log
● $log10
● $mod
● $multiple
● $pow
● $round
● $square

● $arrayElemAt
● $arrayToObject
● $concatArrays
● $filter
● $first
● $in
● $indexOfArray
● $isArray
● $last
● $map
● $objectToArray
● $range
● $reduce
● $reverseArray

● $size
● $slice
● $zip

● $and
● $not
● $or

● $cmp
● $gt
● $gte
● $lt
● $lte
● $ne

● $allElementsTrue
● $anyElementTrue
● $setDifference
● $setEquals
● $setIntersection
● $setIsSubset
● $setUnion

● $trunc
● $subtract

There are a number of comparison expression operators in the Aggregation
Framework. Specifically, these all use BSON comparisons.
$cmp performs a compare operation, $gt is great than, $gte is greater than or equal
to, $lt is less than, $lte is less than or equal and $ne is not equal. These provide a
wide range of the typical comparison required.

Expression Operators: Arithmetic

● $abs
● $add
● $ceil
● $divide
● $exp
● $floor
● $ln
● $log
● $log10
● $mod
● $multiple
● $pow
● $round
● $square

● $arrayElemAt
● $arrayToObject
● $concatArrays
● $filter
● $first
● $in
● $indexOfArray
● $isArray
● $last
● $map
● $objectToArray
● $range
● $reduce
● $reverseArray

● $size
● $slice
● $zip

● $and
● $not
● $or

● $cmp
● $gt
● $gte
● $lt
● $lte
● $ne

● $allElementsTrue
● $anyElementTrue
● $setDifference
● $setEquals
● $setIntersection
● $setIsSubset
● $setUnion

● $trunc
● $subtract

The Aggregation Framework Expression Operators have a full category of operators
that focus specifically on array operations.

Expression Operators: Arithmetic

● $abs
● $add
● $ceil
● $divide
● $exp
● $floor
● $ln
● $log
● $log10
● $mod
● $multiple
● $pow
● $round
● $square

● $arrayElemAt
● $arrayToObject
● $concatArrays
● $filter
● $first
● $in
● $indexOfArray
● $isArray
● $last
● $map
● $objectToArray
● $range
● $reduce
● $reverseArray

● $size
● $slice
● $zip

● $and
● $not
● $or

● $cmp
● $gt
● $gte
● $lt
● $lte
● $ne

● $allElementsTrue
● $anyElementTrue
● $setDifference
● $setEquals
● $setIntersection
● $setIsSubset
● $setUnion

● $trunc
● $subtract

We’ll focus in on $arrayToObject, $objectToArray, and $zip.

$arrayToObject converts an array of key value pairs to a document, whilst
$objectToArray performs the inverse by converting a document to an array of
documents representing key-value pairs.
$zip merges two arrays together.

The wide variety of functionality in the array category of expression operators helps
manage various data manipulation and restructuring tasks in the Aggregation
Framework. To learn more about the other operators in this category, you should
review the MongoDB Documentation pages for these operators.

Expression Operators: Arithmetic

● $abs
● $add
● $ceil
● $divide
● $exp
● $floor
● $ln
● $log
● $log10
● $mod
● $multiple
● $pow
● $round
● $square

● $arrayElemAt
● $arrayToObject
● $concatArrays
● $filter
● $first
● $in
● $indexOfArray
● $isArray
● $last
● $map
● $objectToArray
● $range
● $reduce
● $reverseArray

● $size
● $slice
● $zip

● $and
● $not
● $or

● $cmp
● $gt
● $gte
● $lt
● $lte
● $ne

● $allElementsTrue
● $anyElementTrue
● $setDifference
● $setEquals
● $setIntersection
● $setIsSubset
● $setUnion

● $trunc
● $subtract

The last category of expression operators we’ll look at in this lesson are the set
operators.
Set expressions performs set operation on arrays, treating arrays as sets. Set
expressions ignores the duplicate entries in each input array and the order of the
elements.

These set expression operators do not specify the output of the elements in the set or
deal with nested arrays which are treated as a top level object rather than being
descended into and processed.

Expression Operators: Arithmetic

● $abs
● $add
● $ceil
● $divide
● $exp
● $floor
● $ln
● $log
● $log10
● $mod
● $multiple
● $pow
● $round
● $square

● $arrayElemAt
● $arrayToObject
● $concatArrays
● $filter
● $first
● $in
● $indexOfArray
● $isArray
● $last
● $map
● $objectToArray
● $range
● $reduce
● $reverseArray

● $size
● $slice
● $zip

● $and
● $not
● $or

● $cmp
● $gt
● $gte
● $lt
● $lte
● $ne

● $allElementsTrue
● $anyElementTrue
● $setDifference
● $setEquals
● $setIntersection
● $setIsSubset
● $setUnion

● $trunc
● $subtract

Looking at $setDifference, $setIntersection, and $setUnion.

$setDifference returns a set with elements that appear in the first set but not in the
second set. This is a relative complement set comparison of the second set relative to
the first set.

$setIntersection will return a set with elements that appear in all of the input sets. As
noted previously, there is no guarantee in the ordering of these elements within the
set.

$setUnion will return a set with all the elements that are present in any of the input
sets. The ordering of the elements again is not guaranteed.

Debugging
Aggregations

There are a variety of tools and approaches to debugging an aggregation pipeline,
we’ll provide a brief overview to help point the directions you might take when
debugging.

Debugging Aggregations
Visually debug the pipeline using the aggregation pipeline builder in
Compass or Atlas.

Debug the pipeline using MongoDB for Visual Studio Code using the
Create MongoDB Playground functionality.

Debug the pipeline programmatically via a MongoDB Driver using
variables with or without an IDE, preferably using a debugger to allow for
more granular control.

Use the comment option to add a description to the logs, the entry in the
db.system.profile collection, and the db.currentOp output.

There are a few approaches to debugging aggregation framework pipelines. We’ll
start we the most recommended approach and work down through the preferred
options in order of their recommendation from MongoDB.

The recommended approach is to use one of MongoDB’s tools to do it, specifically
there is a aggregation pipeline builder which is available in both MongoDB Compass
and in MongoDB Atlas. This GUI allows for each stage to be easily inspected in terms
of the syntax and of what is the result of running that stage on a document.

These tools have a really useful feature that you can export the pipeline once
completed to syntax for several of the MongoDB Drivers. This allows you to both
debug the code and then copy it for use in your application.

Additionally, you can paste code in MongoDB Shell syntax into the aggregation
pipeline builder.

Debugging Aggregations
Visually debug the pipeline using the aggregation pipeline builder in
Compass or Atlas.

Debug the pipeline using MongoDB for Visual Studio Code using the
Create MongoDB Playground functionality.

Debug the pipeline programmatically via a MongoDB Driver using
variables with or without an IDE, preferably using a debugger to allow for
more granular control.

Use the comment option to add a description to the logs, the entry in the
db.system.profile collection, and the db.currentOp output.

The next approach to debugging an aggregation is to use an IDE with additional
MongoDB functionality. The Microsoft Visual Studio Code IDE has a MongoDB plugin
that provides a playground feature which can be used to debug an aggregation
pipeline.

For more details, you can share this link -
https://developer.mongodb.com/how-to/mongodb-visual-studio-code-plugin

https://developer.mongodb.com/how-to/mongodb-visual-studio-code-plugin

Debugging Aggregations
Visually debug the pipeline using the aggregation pipeline builder in
Compass or Atlas.

Debug the pipeline using MongoDB for Visual Studio Code using the
Create MongoDB Playground functionality.

Debug the pipeline programmatically via a MongoDB Driver using
variables with or without an IDE, preferably using a debugger to allow for
more granular control.

Use the comment option to add a description to the logs, the entry in the
db.system.profile collection, and the db.currentOp output.

The third approach to debugging aggregations is to do so programmatically via a
MongoDB driver utilizing variables for each stage and adding / subtracting to these
walk through the entire pipeline.

This can be done with or without an IDE. It is easier to do this type of debugging with
an IDE, and preferably where a debugger is available within the IDE to allow you to
better control the debugging process.

Debugging Aggregations
Visually debug the pipeline using the aggregation pipeline builder in
Compass or Atlas.

Debug the pipeline using MongoDB for Visual Studio Code using the
Create MongoDB Playground functionality.

Debug the pipeline programmatically via a MongoDB Driver using
variables with or without an IDE, preferably using a debugger to allow for
more granular control.

Use the comment option to add a description to the logs, the entry in the
db.system.profile collection, and the db.currentOp output.

The previous approaches deal with individual aggregations and how to debug them.
In the context of applications you may have many different aggregation pipelines
being used and all being run frequently.

The comment option in the aggregate function allows for a description to be added to
the logging for when this aggregation is run.

This means the logs, the entries in the db.system.profile collection, and the output of
the db.currentOp command will all include this text description.

Quiz

Quiz
Which of the following are recommended approaches for
debugging aggregations in MongoDB? More than one
answer choice can be correct.

A. Use Atlas’ or Compass’ aggregation pipeline builder

B. Use an IDE with a debugger

C. Use the comment in the aggregate function()

D. Use the MongoShell to debug the pipeline

Quiz
Which of the following are recommended approaches for
debugging aggregations in MongoDB? More than one
answer choice can be correct.

A. Use Atlas’s or Compass’s aggregation pipeline builder

B. Use an IDE with a debugger

C. Use the comment in the aggregate function()

D. Use the MongoShell to debug the pipeline

CORRECT: Use Atlas’ or Compass’ aggregation pipeline builder - This is correct.
Using either Atlas or Compass, and specifically their built-in aggregation pipeline
builder is the most recommended approach for debugging an aggregation in
MongoDB.
CORRECT: Use an IDE with a debugger - This is correct. Using an integrated
development environment (VS Code, JetBrains PyCharm, etc.) provides a structured
environment to more easily debug your aggregation, ideally this can also be done with
a debugger to allow for further breakpoints and steps within your program’s execution
to better debug any issues.
CORRECT: Use the comment in the aggregate function() - This is correct. The
comment option provides a means to associate a text string or line to the specific
aggregation, this allows for you to easily associate the outputs in your logs to your
aggregations,
INCORRECT: Use the MongoShell to debug the pipeline - This is incorrect. This is not
a recommended approach for debugging aggregations as it is suitable for small
pipelines but as the number of stages grow the tool becomes more inefficient as it
isn’t designed to support debugging for pipelines with moderate or larger number of
stages.

Quiz
Which of the following are recommended
approaches for debugging aggregations in
MongoDB? More than one answer choice can be
correct.

A. Use Atlas’s or Compass’s aggregation
pipeline builder

B. Use an IDE with a debugger

C. Use the comment in the aggregate function()

D. Use the MongoShell to debug the pipeline

This is correct. Using
either Atlas or
Compass, and
specifically their
built-in aggregation
pipeline builder is the
most recommended
approach for
debugging an
aggregation in
MongoDB.

CORRECT: Use Atlas’ or Compass’ aggregation pipeline builder - This is correct.
Using either Atlas or Compass, and specifically their built-in aggregation pipeline
builder is the most recommended approach for debugging an aggregation in
MongoDB.

Quiz
Which of the following are recommended
approaches for debugging aggregations in
MongoDB? More than one answer choice can be
correct.

A. Use Atlas’s or Compass’s aggregation
pipeline builder

B. Use an IDE with a debugger

C. Use the comment in the aggregate function()

D. Use the MongoShell to debug the pipeline

This is correct. Using
an IDE provides a
structured
environment to more
easily debug your
aggregation, ideally
this can also be done
with a debugger to
allow for further
breakpoints.

CORRECT: Use an IDE with a debugger - This is correct. Using an IDE provides a
structured environment to more easily debug your aggregation, ideally this can also
be done with a debugger to allow for further breakpoints.

Quiz
Which of the following are recommended
approaches for debugging aggregations in
MongoDB? More than one answer choice can be
correct.

A. Use Atlas’s or Compass’s aggregation
pipeline builder

B. Use an IDE with a debugger

C. Use the comment in the aggregate function()

D. Use the MongoShell to debug the pipeline

This is correct. The
comment option
provides a means to
associate a text string
or line to the specific
aggregation, this
allows for you to easily
associate the outputs
in your logs to your
aggregations.

CORRECT: Use the comment in the aggregate function() - This is correct. The
comment option provides a means to associate a text string or line to the specific
aggregation, this allows for you to easily associate the outputs in your logs to your
aggregations.

Quiz
Which of the following are recommended
approaches for debugging aggregations in
MongoDB? More than one answer choice can be
correct.

A. Use Atlas’s or Compass’s aggregation
pipeline builder

B. Use an IDE with a debugger

C. Use the comment in the aggregate function()

D. Use the MongoShell to debug the pipeline

This is incorrect. This is
not a recommended
approach for debugging
aggregations as it is
suitable for small
pipelines but this tool
isn’t designed to support
debugging for pipelines
with moderate or larger
number of stages.

INCORRECT: Use the MongoShell to debug the pipeline - This is incorrect. This is not
a recommended approach for debugging aggregations as it is suitable for small
pipelines but this tool isn’t designed to support debugging for pipelines with moderate
or larger number of stages.

Outputting the
Results

Let’s look at the two stages that can be used at the end of an aggregation pipeline to
output the results, these are $out and $merge.

This stage takes the stream of
documents and writes these to
a collection. It cannot write to
a sharded collection. It either
creates a new collection or
overwrites an existing
collection.

$out

$out

The $out stage takes the stream of documents and writes these to a collection. It
cannot write to a sharded collection. It either creates a new collection or overwrites an
existing collection.

$merge
Writes the documents from the
pipeline to a collection which
can be sharded. It can replace
existing documents or
updating documents unlike
$out.

outmerge

The $merge stage writes the documents from the pipeline to a collection which can be
sharded. It can replace existing documents or update documents unlike $out.

Drivers &
Aggregations

Let’s look at the two stages that can be used at the end of an aggregation pipeline to
output the results, these are $out and $merge.

Drivers and Aggregations
Provide the same functionality as available in the MongoDB Shell,
however it will be idiomatic to the specific driver language.

Returns a cursor over the results but can write to a collection using
$out or $merge.

Can be associated to a specific client session.

Can have the read concern and the write concern set per aggregation
pipeline or if not set will use the MongoDB defaults.

Drivers provide the same functionality as available in the MongoDB Shell, however it
will be idiomatic to the specific driver language.

This means it will uses the standards and conventions for that language which may
mean the syntax is not exactly the same when compared with the MongoDB Shell.

Drivers & Aggregations

Provide the same functionality as available in the MongoDB Shell,
however it will be idiomatic to the specific driver language.

Returns a cursor over the results but can write to a collection using
$out or $merge.

Can be associated to a specific client session.

Can have the read concern and the write concern set per aggregation
pipeline or if not set will use the MongoDB defaults.

Drivers will typically use the cursor returned from the aggregation pipeline and
conduct any further processing on this data. For example, in Python the result set will
be returned as an array of dictionaries which programmers can then process further
as required.

It is also possible to include either the $out or the $merge stage with a MongoDB
Driver and have the output of the pipeline written to a collection.

Drivers & Aggregations

Provide the same functionality as available in the MongoDB Shell,
however it will be idiomatic to the specific driver language.

Returns a cursor over the results but can write to a collection using
$out or $merge.

Can be associated to a specific client session.

Can have the read concern and the write concern set per aggregation
pipeline or if not set will use the MongoDB defaults.

It is possible to associate a particular aggregation pipeline invocation to a specific
client session. In the MongoDB Shell using aggregation will have the pipeline
automatically associated to the session being used by the MongoDB Shell.

Drivers & Aggregations

Provide the same functionality as available in the MongoDB Shell,
however it will be idiomatic to the specific driver language.

Returns a cursor over the results but can write to a collection using
$out or $merge.

Can be associated to a specific client session.

Can have the read concern and the write concern set per aggregation
pipeline or if not set will use the MongoDB defaults.

The read concern and the write concern can be set individually per aggregation
pipeline. If these are not set, they will use the MongoDB defaults.

Quiz

Quiz
Which of the following are true for MongoDB Drivers and the
Aggregation Framework? More than one answer choice can be
correct.

A. Can return a cursor or use $out or $merge

B. Must be associated to a specified client session

C. Allows for the configuration of read concerns and of write
concerns

D. Uses the same syntax, regardless of driver language

Quiz
Which of the following are true for MongoDB Drivers and the
Aggregation Framework? More than one answer choice can be
correct.

A. Can return a cursor or use $out or $merge

B. Must be associated to a specified client session

C. Allows for the configuration of read concerns and of write
concerns

D. Uses the same syntax, regardless of driver language

CORRECT: Can return a cursor or use $out or $merge - This is correct. The
MongoDB Drivers typically use a cursor passing the result set to the application for
further processing but they can also use $out or $merge to write the results of the
pipeline to a collection.
INCORRECT: Must be associated to a specified client session - This is incorrect. A
driver can be associated to a specific client session but it does not have to be
explicitly associated to a client session.
CORRECT: Allows for the configuration of read concerns and of write concerns - This
is correct. The MongoDB Drivers can set the read concern and/or the write concern
for an aggregation pipeline.
INCORRECT: Use the same syntax, regardless of driver language - This is incorrect.
The same functionality is available across all of the MongoDB Drivers, however the
syntax will differ as MongoDB Drivers are idiomatic to the specific programming
language.

Quiz
Which of the following are true for MongoDB Drivers and
the Aggregation Framework? More than one answer
choice can be correct.

A. Can return a cursor or use $out or $merge

B. Must be associated to a specified client session

C. Allows for the configuration of read concerns
and of write concerns

D. Use the same syntax, regardless of driver
language

This is correct. The
MongoDB Drivers
typically use a cursor
passing the result set to
the application for
further processing but
they can also use $out
or $merge to write the
results of the pipeline to
a collection.

CORRECT: Can return a cursor or use $out or $merge - This is correct. The
MongoDB Drivers typically use a cursor passing the result set to the application for
further processing but they can also use $out or $merge to write the results of the
pipeline to a collection.

Quiz
Which of the following are true for MongoDB Drivers and
the Aggregation Framework? More than one answer
choice can be correct.

A. Can return a cursor or use $out or $merge

B. Must be associated to a specified client session

C. Allows for the configuration of read concerns
and of write concerns

D. Use the same syntax, regardless of driver
language

This is incorrect. A
driver can be
associated to a
specific client session
but it does not have to
be explicitly associated
to a client session.

INCORRECT: Must be associated to a specified client session - This is incorrect. A
driver can be associated to a specific client session but it does not have to be
explicitly associated to a client session.

Quiz
Which of the following are true for MongoDB Drivers and
the Aggregation Framework? More than one answer
choice can be correct.

A. Can return a cursor or use $out or $merge

B. Must be associated to a specified client session

C. Allows for the configuration of read concerns
and of write concerns

D. Use the same syntax, regardless of driver
language

This is correct. The
MongoDB Drivers
can set the read
concern and/or the
write concern for an
aggregation
pipeline.

CORRECT: Allows for the configuration of read concerns and of write concerns - This
is correct. The MongoDB Drivers can set the read concern and/or the write concern
for an aggregation pipeline.

Quiz
Which of the following are true for MongoDB Drivers and
the Aggregation Framework? More than one answer
choice can be correct.

A. Can return a cursor or use $out or $merge

B. Must be associated to a specified client session

C. Allows for the configuration of read concerns
and of write concerns

D. Use the same syntax, regardless of driver
language

This is incorrect. The
same functionality is
available across all of the
MongoDB Drivers,
however the syntax will
differ as MongoDB
Drivers are idiomatic to
the specific
programming language.

CORRECT: Allows for the configuration of read concerns and of write concerns - This
is correct. The MongoDB Drivers can set the read concern and/or the write concern
for an aggregation pipeline.

Continue Learning! Github Student
Developer Pack

Sign up for the MongoDB Student Pack to
receive $50 in Atlas credits and free
certification!

MongoDB University has free self-paced
courses and labs ranging from beginner
to advanced levels.

This concludes the material for this lesson. However, there are many more ways to
learn about MongoDB and non-relational databases, and they are all free! Check out
MongoDB’s University page to find free courses that go into more depth about
everything MongoDB and non-relational. For students and educators alike, MongoDB
for Academia is here to offer support in many forms. Check out our educator
resources and join the Educator Community. Students can receive $50 in Atlas credits
and free certification through the Github Student Developer Pack.

https://www.mongodb.com/students
https://university.mongodb.com/
https://university.mongodb.com/
http://www.mongodb.com/academia
http://www.mongodb.com/academia
https://www.mongodb.com/students

